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Abstract In this paper, a wavelet-based approximation
method is introduced for solving the Newell-Whitehead
(NW) and Allen—Cahn (AC) equations. To the best of our
knowledge, until now there is no rigorous Legendre
wavelets solution has been reported for the NW and AC
equations. The highest derivative in the differential equa-
tion is expanded into Legendre series, this approximation is
integrated while the boundary conditions are applied using
integration constants. With the help of Legendre wavelets
operational matrices, the aforesaid equations are converted
into an algebraic system. Block pulse functions are used to
investigate the Legendre wavelets coefficient vectors of
nonlinear terms. The convergence of the proposed methods
is proved. Finally, we have given some numerical exam-
ples to demonstrate the validity and applicability of the
method.

Keywords Newell-Whitehead equation - Allen—Cahn
equation - Operational matrices - Legendre wavelets -
Laplace transform method - Homotopy analysis method

Introduction

Wavelet analysis, as a relatively new and emerging area in
Applied Mathematical Research, has received considerable
attention in dealing with PDEs (Hariharan et al. 2009;
Hariharan and Kannan 2009a; Hariharan and Kannan
2010a; Hariharan and Kannan 2010b; Hariharan 2013;
Jafari et al. 2011; Yang 2013; Heydari et al. 2012; Yin
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et al. 2012). In recent years, nonlinear reaction diffusion
equations (NLRDE) have been used as a basis for a wide
variety of models, for the special spread of gene in popu-
lation (Hariharan and Kannan 2009a) and for chemical
wave propagation (Babolian and Saeidian 2009).

Consider the general nonlinear parabolic equation is of
the form

U, = Uy +aU + bU" (1)

where a and b are real constants. Fora =1, b = —1 and
n =3, Eq. (1) becomes Allen—-Cahn (AC) equation. It
arises in many scientific applications such as mathematical
biology, quantum mechanics and plasma physics (Voigt
2001; Hariharan and Kannan 2009b). If for n = 3 and
b = —b, then Eq. (1) becomes the Newell-Whitehead
(NW) equation. This equation describes the dynamical
behavior near the bifurcation point for the Rayleigh—Be-
nard convection of binary fluid mixtures (Hariharan and
Kannan 2010a; Nourazar et al. 2011; Schneider 1994;
Babolian and Saeidian 2009; Kheiri et al. 2011; Ezzati and
Shakibi 2011; Hammouch and Mekkaoui 2013).

In recent years, wavelet transforms have found their way
into many different fields in science and engineering.
Moreover, wavelet transform methods establish a connec-
tion with fast numerical algorithms.

Wavelet theory possesses many useful properties, such
as Compact support, orthogonality, dyadic, orthonormality
and multi-resolution analysis (MRA). In recent years, the
AC equations play a significant role in fluid dynamics and
many scientific applications. Recently, many new approa-
ches to NLRDEs have been proposed, for example, the
Adomian decomposition method (Ezzati and Shakibi
2011), homotopy perturbation method (Nourazar et al.
2011), homotopy analysis method (Hariharan 2013; Kheiri
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etal. 2011). A more comprehensive list of references about
the NW and Allen—Cahn equation (ACE) and its applica-
tions in engineering can be found in (Hariharan and Kan-
nan 2009a; Hariharan and Kannan 2010a; Schneider 1994,
Voigt 2001; Kheiri et al. 2011; Hariharan and Kannan
2009b; Ezzati and Shakibi 2011). Recently, Hariharan and
Rajaraman (2013) established a new coupled wavelet-
based method applied to the NLRDE arising in mathe-
matical chemistry. Yin et al. (2013) introduced a wavelet
based hybrid method for solving Klein—Gordan equations.
In the numerical analysis, wavelet based methods and
hybrid methods become important tools because of the
properties of localization. In wavelet based methods, there
are two important ways of improving the approximation of
the solutions: increasing the order of the wavelet family
and the increasing the resolution level of the wavelet.
There is a growing interest in using various wavelets
(Razzaghi and Yousefi 2001; Parsian 2005; Razzaghi and
Yousefi 2000; Yousefi 2006; Mohammadi and Hosseini
2011; Maleknejad and Sohrabi 2007; Hariharan et al. 2009;
Hariharan and Kannan 2009a; Hariharan and Kannan
2010a; Hariharan and Kannan 2010b; Jafari et al. 2011;
Yang 2013; Heydari et al. 2012; Yin et al. 2012; Khellat
and Yousefi 2006) to study problems, of greater compu-
tational complexity. Among the wavelet transform families
the Haar and Legendre wavelets deserve much attention.
The basic idea of Legendre wavelet method is to convert
the PDEs to a system of algebraic equations by the oper-
ational matrices of integral or derivative (Hariharan et al.
2009; Hariharan and Kannan 2009a; Hariharan and Kannan
2010a; Hariharan and Kannan 2010b). The main goal is to
show how wavelets and MRA can be applied for improving
the method in terms of easy implementability and achiev-
ing the rapidity of its convergence. Razzaghi and Yousefi
(2001); Razzaghi and Yousefi 2000) introduced the
Legendre wavelet method for solving variational problems
and constrained optimal control problems. Hariharan et al.
(Hariharan et al. 2009; Hariharan and Kannan 2009a; Ha-
riharan and Kannan 2010a; Hariharan and Kannan 2010b)
had introduced the diffusion equation, convection—diffu-
sion equation, Reaction—diffusion equation, non linear
parabolic equations and Fisher’s equation by the Haar
wavelet method. Mohammadi and Hosseini (Mohammadi
and Hosseini 2011) had showed a new Legendre wavelet
operational matrix of derivative in solving singular ordin-
ary differential equations. Jafari et al. (2011) had solved the
fractional differential equations by the Lagendre wavelet
method. Parsian (2005) introduced two dimension Legen-
dre wavelets and operational matrices of integration. In
recent years, many analytical/approximation methods have
been proposed for solving the NW and AC equations.
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In this work, we have applied a wavelet-based coupled
method (LLWM) which combines the Laplace transform
method and the Legendre wavelets method for the
numerical solutions of the NW and AC equations.

This paper is organized as follows: basic definitions of
wavelets, Legendre wavelets and their properties are
described in Legendre Wavelets and Properties Section.
Then, the method of solution of the NW and AC equations
by the LLWM is presented in Method of Solution Section.
In Convergence Analysis and Error Estimation Section, the
convergence analysis is described. In Illustrative Examples
Section, several numerical examples are presented to
demonstrate the effectiveness of the proposed method.
Concluding remarks are given in Conclusion Section.

Legendre Wavelets and Properties
Wavelets

Wavelets are the family of functions which are derived
from the family of scaling function {(); . k € Z} where:

Dx) =Y ax(2x —k) (2)

For the continuous wavelets, the following equation can
be represented:

Y, (x) = |a7 ¥ (x -

b) a,beR, a#0. (3)

where a and b are dilation and translation parameters,
respectively, such that ¥(x) is a single wavelet function.

The discrete values are put for a and b in the initial form
of the continuous wavelets, i.e.:

a=ay, ap>1, by > 1, (4)
b = kboay’, jk € Z. (5)

Then, a family of discrete wavelets can be constructed
as follows:

W, x = |ao P (20x — k), (6)

So, 'Pj,k(x) constitutes an orthonormal basis in L> (R),
where ¥(x) is a single function.

Legendre Wavelets

The Legendre wavelets are defined by
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[ 1. _ n—1 nt
m+52%Lm(2’<t—n), for ”7 <t< %
Vom(t) =

0, otherwise

)

(7)

where m=0,1,2, ... M —1l,andn=1,2, ....,2% "1
The coefficient ,/m+% is for orthonormality, then, the

wavelets ¥y ,,(x) form an orthonormal basis for L0, 11 (]
In the above formulation of Legendre wavelets, the
Legendre polynomials are in the following way:

170:1;
P1 =X,
2m+ 1 m
m = m —_— m— . 8
Pt () = L () = 1) Q

and {p,.1(x)} are the orthogonal functions of order m,
which is named the well-known shifted Legendre polyno-
mials on the interval [0, 1] Note that, in the general form of
Legendre wavelets, the dilation parameter is ¢ = 27 and
the translation parameter is b = n 2~.

Block Pulse Functions (BPFs) (Yin et al. 2013)

The block pulse functions form a complete set of orthog-
onal functions which defined on the interval [0, b] by

i—1 i
1 b<t<—b
bi(t) = T m T m )
0 elsewhere
fori =1, 2, ..., m. It is also known that for any absolutely

integrable function f(7) on [0, b] can be expanded in block
pulse functions:

f(1) = &"Bu (1) (10)
& = [fi.for oSl Bu(t) = [b1(1),02(0), .. bu(n)] (1)
where f; are the coefficients of the block-pulse function,
given by

(12)

Remark I: Let A and B are two matrices of m x m, then
A ® B = (aif X bij)mmA

Lemma 1: Assuming f(t) and g(t) are two absolutely
integrable functions, which can be expanded in block pulse
function as f(t) = FB(t) and g(t) = GB(t) respectively, then
we have

f(0)g(r) — FB(1)B (1)G" = HB(1) (13)

where H=F ® G.
Approximating the Nonlinear Term (Yin et al. 2013)

The Legendre wavelets can be expanded into m-set of
block-pulse functions as

ql(t) = Q)m XmBm(t) (14)
Taking the collocation points as following
i—-1/2 X1
ti:m, l:1,2,...,2 M (15)

The m-square Legendre matrix (,, » ,, is defined as
B scm = [P(0)P(12). . . P (12— 131)] (16)
The operational matrix of product of Legendre wavelets
can be obtained by using the properties of BPFs, let
f(x,1) and g(x,t) are two absolutely integrable functions,
which can be expanded by Legendre wavelets as f(x, 1) =
YT (x)FP(t) and g(x,t) = P (x)G¥(t) respectively.
Then
fx,t) =Y (x)F¥(t) = B" (x)0),,F0umB(t),
g(x, 1) = ¥ (x)G¥ (1) = B (x)0,, GlunB(1),
and
Fy, = q);mF@mm7 G, = Q),Y;mG(Z)mmaHb =F, ® Gp.
f(x,1)g(x, 1) = B"H,B(1),

=BT (x)@;minv ((Z)Z,;m)H;,inv (inv ((/)T )H;,inv((/)mm))@mmB(t)

mm

=Y (x)HY(r) (19)
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where H = inv(0T YHpyinv((0m))

Function Approximation

A given function fix) with the domain [0, 1] can be
approximated by:

FO =" 3" ckmPimx) = C" (). (20)

Here C and ¥ are the matrices of size (27'M x 1).

C = I:clv())cl.ly < CIM-1,€20,C215 - - -C2M—15- -+

T (21)
Coy-11y-- .Czj—]’M,I]
T
'II()C) = [q/]’(), YIL], TZ,O: qu,] P 'W(Z,Mfl)a .. 'T(Z(/"),Mfl)]
(22)
Method of Solution
Solving the Cahn—Allen Equation by the LLWM
We consider the AC equation
U =¢eUy+U-U (23)

Taking Laplace transform on both sides of Eq. (23), we
get

SL(U) — U(x,0) = L[gUy + U — U?] (24)
sL(U) = U(x,0) + L[eUy + U — U] (25)
L(U) = U(’;’ 0, éL[eUn L U— U (26)

Taking inverse Laplace transform to Eq. (26) we get

U(x,t) = U(x,0) + L' (%L[SUM +U - U3]) (27)
Because
e | = ”+!2
L ] | (Sn > (28)
:mt’“'l;(n =0,1,2,...)
We have
Ls20) = [ (e (29)
0
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From Eq. (29), we obtain

1
U(x,t) = U(x,0) + L <;L(8Um + g(U)))) (30)
Where g(U) = U — U?
1
U(x,t) = U(x,0) + L' (—L(SUXX + g(U)))) (31)
s
By using the Legendre wavelets method,
U(x> t) = CTW()C, [)
U(x,0) = S"y(x,1) (32)
g(U) = G"(x,1)
Substituting Eq. (32) in Eq. (27), we obtain
C" =58" + (eC"Dx* — G")P? (33)

Here G has a nonlinear relation with C. When we solve
a nonlinear algebraic system, we get the solution is more
complex and large computation time. In order to overcome
the above drawbacks, we introduce an approximation for-
mula as follows:

2

o°U,
Un+l = U('x7 O) + H|: axz + g<Un):|

(34)

where g(U) = aU — aU?
Expanding u(x, t) by Legendre wavelets using the fol-
lowing relation

Con" =G + 1D - G,"IP? (35)
Solving the Newell-Whitehead equation by the LLWM

We consider the Nowell-Whitehead equation
U, = Uy +aU — bU? (36)

Taking Laplace transform on both sides of Eq. (36), we
get

SL(U) — U(x,0) = L[Uyy + aU — bU’] (37)
sL(U) = U(x,0) + L[Uyy + aU — bU’] (38)
L(U) = U();’ 0 + éL[Um +aU — bUP) (39)

Taking inverse Laplace transform to Eq. (39) we get
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1
U(X7 t) = U('xa O) +L! <;L[Uxx+aU_bU3]> (40)
Because

L FL(t”)] =L

s
(41)
We have
t
L' s7'L()) = / (.)dt (42)
0
From Eq. (42), we obtain
1
U6 =00+ 17 (S ke0)) @)
Where g(U) = aU — bU?
1
U = U0+ 17 (LUt s0)) )
By using the Legendre wavelets method,
Ulx,1) = CTY(x, 1)
U(x,0) = S"(x,1) (45)
g(U) =G (x,1)
Substituting Eq. (45) in Eq. (43), we obtain
C" =58" + (C"Dx* — G")P? (46)

Here G” has a nonlinear relation with C. When we solve
a nonlinear algebraic system, we get the solution is more
complex and large computation time. In order to overcome
the above drawbacks, we introduce an approximation for-
mula as follows:

2

o°U,
Un+l = U(.X, O) + H|: ax2 +g(Un):| (47)

where g(U) = aU — bU?
Expanding u(x, ) by Legendre wavelets using the fol-
lowing relation

Coi" =C" +[C."D? -G, IP?

Convergence Analysis and Error Estimation
(Yin et al. 2013)

U' = U+ 1[U;, +g(U")] (48)
U1 = Uy + I [(Uy),, + 8(U,)] (49)

Subtracting Eq. (48) from Eq. (49), we obtain

Un+1 - U* - H[(Un - U*)xx +g(Un) - g(U*)] (50)
Using Lipschitz  condition, ||g(U,) — g(U")|| <y
|U, — U*||, we have

Uit = US| < [[TT(Un = U)o || + 1111 (8(U) = g(U))|

(51)
<11, U) || + 9111 (U, - )] (52)
Let Uy = CLW(x,1)
U = CTy(x,1)
enTH: CZH -c’
Eq. (52) gives
€l < € 024903 3

The following formula Eq. (54) can be obtained by
using recursive relation.

Enr1’ < ET|IDPA + P o (54)

When Lim||D*P + yP*||" = 0, the series solution
of Eq. (23) using the LLWM converges to u*(x). By
using the definitions of D, and P;, we can get the value of
y. Suppose k =k =1 and M = M’, the maximum ele-
ment of D, and P, is 2\/(2M —1)(2M —3) and 0.5
respectively.

Error Estimation

The accuracy of the proposed method LLWM is estimated
by the following error function

E; = |Uexae: — U approx
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Ilustrative Examples

Example 5.1 We consider the AC equation of the form
(Hariharan and Kannan 2010a; Voigt 2001; Hariharan and
Kannan 2009b)

ou  u 2
&—@—Fu(l—u) (55)
The exact solution in a closed form is given by

1
14 e (D0’

u(x, 1) = (56)

where ¢y is integration constant.
The approximation formula for Eq. (55) as follows

2
Urot = U 0)+ 1155 + (0, (57)

where g(U) = aU — bU?

Expanding u(x, ) by Legendre wavelets using the fol-
lowing relation
G’ =G’ +1[G,D - G/]P? (58)

Example 5.2 Consider the initial value problem (Ezzati
and Shakibi 2011)

u  u 2
5—6—)624-14(1—14) (59)
with an initial condition of

u(x,0) = —0.5 4 0.5 tanh (0.3536x) (60)

The exact solution is given by
u(x, 1) =

Example 5.3 We consider the Newell-Whitehead—Segel
equation (Nourazar et al. 2011)

—0.5 + 0.5 tanh(0.3536x — 0.75¢) (61)

ou ou

5 62+2 u—3u? (62)

Subject to the initial condition
u(x,0) = A (63)

The exact solution in a closed form is given by
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3},e

u(x, t) =3,
—§+ 4 — A

(64)

The Newell-Whitehead—Segel equations have wide
applicability in mechanical and chemical engineering,
ecology, biology and bio-engineering.

Example 5.4 Consider the initial value problem
(Hariharan and Kannan 2009a)
U = Uy + 1 — 1° (65)
Subject to the initial condition
1
u(x,0) = ———= (66)
(1+¢%)

The exact solution in a closed form is given by

o) = — 1 (67)

x50\ 2
(1 + eﬁ75t>

Example 5.5 Consider the Newell-Whitehead—Segel
equation (Nourazar et al. 2011)

U =t +u—u' (68)

Subject to the initial condition

u(x,0) = — (69)

a\3
(1+em>‘

The exact solution in a closed form is given by

o= (a2 (- T) ) o

Our results can be compared with Nourazar et al. (2011)
results.

Example 5.6 Consider the Newell-Whitehead—Segel
equation (Nourazar et al. 2011)

Uy = Uy + 3u — 4’ (71)

Subject to the initial condition

u(x,0) = \/EL (72)
) - 4e\/6)‘—|—€\/7€x
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The exact solution in a closed form is given by Table 2 Comparison between
X t Uexacr Urrwu
the exact and LLWM for
V3 Vo Example 5.4 025 0.5 0.81839 0.81855
u(x,t) = e \/’—M (73) 1.0 0.98292 0.98305
ox—3t
A AR 2.0 0.99988 0.99999
. h . h 5.0 1.00000 1.00000
fﬁnﬁl@ 5:72.OCII;)n31der the NW equation (Hammouc 050 05 077590 077602
and Viekkaout ) 1.0 097815 0.97824
2.0 0.99985 0.99996
3
U =u U—u 74
L (74) 5.0 1.00000 1.0000
. C .. .. 0.75 0.5 0.72582 0.72595
Subject to the initial condition
1.0 0.92207 0.92221
. 2.0 0.99981 0.99993
sinh (é) 5.0 1.00000 1.00000
u(x,0) = ———— (75) : : :
X
1 + cosh ( ﬁ)
The exact solution in a closed form is given by
Table 3 Comparison between X t Exact LLWM
ES - the exact and LLWM for
ev2 —e V2
u(x,t) = —— . (76) ~ Example 5.6 0.1 02 05054 0.5062
erte 242 02 04 07364 07371
0.3 0.6 0.8780 0.8786
Example 5.8 Consider the NW equation (Kheiri et al.
P q ( 04 0.8 09475 0.9480
2011)
0.5 1.0  0.9781 0.9784
U = Uy + 4u + 4’ (77)
Subject to the initial condition
Table 4 Numerical values of Example 5.7 (k = 1 and M = 3)
. 2
(x,0) (COSh (% \/Ex) + sinh (% \/Ex)) (78) X t Exact solution Numerical
u(x,0) =
' 4 cosh? (1 v/2x) Uram Urrwm
0.001 0.001 0.49983572 0.49983571
The exact solution in a closed form is given by 0.002 0.002 0.49967144 0.49967145
0.003 0.003 0.49950716 0.49950715
. 2 004 004 499342 499342
(cosh(%/—(x—S\/Et))+Slnh(i\/—(x—3\/§t))) 0.00: 0.00: 0.49934288 0.49934288
u(x, 1) = 2 2 0.005 0.005 0.49917859 0.49917858
4 cosh? (\% (x— 3\/§z)> 0.006 0.006 0.49901431 0.49901430
(79) 0.007 0.007 0.49988501 0.49988502
0.008 0.008 0.49868574 0.49868571
. . 0.009 0.009 0.49852145 0.49852146
Tables (1, 2, 3, 4, 5) show the numerical solutions of 0.01 0.01 0.49835716 0.49835712
the AC and NW type equations for various values ) ) ) )
(x, £). Our LLWM results are in excellent agreement
Table 1 Absolute error of LLWM (Example 5.2) Table 5 Numerical values of (=5
Example 5.8 (k=1 and M = 3)
X t=0.1 t=0.3 t=20.5 _30 9.8577 x 10~3!
—-25 1.18943E—11 7.27843E—12 6.4747E—12 =25 1.3786 x 107>
—15 2.36636E—9 9.36464E—10 1.35653E—10 —20 19110 x 107'*
25 9.84744E—10 8.46464E—9 7.49924E—10 —15 2.6451 x 107"
30 3.57575E—11 7.484843E—10 2.44443E—10 -10 44842 x 10717
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Fig. 1 The surface area shows
that u(x, f) using LLWM for
Example 5.1 atx = 0.75, k =3
and M =2

6
Fig. 2 The surface area shows
that u(x, f) using LLWM for
Example 54 at x = 0.75, k = 2
and M =2
4

with the exact solution and those obtained by the (HAM) and the differential transform method (DTM).
Adomian decomposition method (ADM), Homotopy  Figs. (1, 2, 3) show the numerical solutions of the AC
perturbation method (HPM), Homotopy analysis method  and NW type equations for various values of (x, f).
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Fig. 3 The surface area shows that u(x, f) using LLWM for Example
57Tatx=025k=2and M =3

Good agreement with the exact solution is achieved. For
larger values of

All the numerical experiments presented in this section
were computed in double precision with some MATLAB
codes on a personal computer System Vostro 1400 Pro-
cessor X 86 Family 6 Model 15 Stepping 13 Genuine
Intel ~596 MHz.

Conclusion

In this work, a new Legendre wavelet-based approximation
method has been successfully employed to obtain the
numerical solutions of NW and AC equations arising in
various fields. The proposed scheme is the capability to
overcome the difficulty arising in calculating the integral
values while dealing with nonlinear problems. This method
shows higher efficiency than the traditional Legendre
wavelet method for solving nonlinear PDEs. Numerical
example illustrates the powerful of the proposed scheme
LLWM. Also this paper illustrates the validity and excel-
lent potential of the LLWM for nonlinear and fractional
PDEs. The numerical solutions obtained using the pro-
posed method show that the solutions are in very good
coincidence with the exact solution. In addition the cal-
culations involved in LLWM are simple, straight forward
and small computation cost. In “Convergence Analysis and
Error Estimation” section, we have developed the con-
vergence of the proposed algorithm.

Acknowledgments This work was supported by the Naval Research
Board (DNRD/05/4003/NRB/322), Government of India. The author
is very grateful to the referees for their valuable suggestions. Our
hearty thanks are due to Prof. R. Sethuraman, Vice-Chancellor,
SASTRA University, Dr. S. Vaidhyasubramaniam, Dean/Planning

and development and Dr. S. Swaminathan, Dean/Sponsored research
for their kind encouragement and for providing good research
environment.

References

Babolian E, Saeidian J (2009) Analytic approximate solution to Burgers,
Fisher, Huxley equations and two combined forms of these
equations. Commun Nonlinear Sci Numer Simulat 14:1984-1992

Ezzati R, Shakibi K (2011) Using Adomian’s decomposition and
multiquadric quasi-interpolation methods for solving Newell—
Whitehead equation. Procedia Comput Sci 3:1043-1048

Hammouch Z, Mekkaoui T (2013) Approximate analytical and
numerical solutions to fractional KPP-like equations. Gen Math
Notes 14(2):1-9

Hariharan G (2013) The homotopy analysis method applied to the
Kolmogorov—Petrovskii—Piskunov (KPP) and fractional KPP
equations. J Math Chem 51:992-1000. doi:10.1007/s10910-012-
0132-5

Hariharan G, Kannan K (2009a) Haar wavelet method for solving
Fisher’s equation. Appl Math Comput 211:284-292

Hariharan G, Kannan K (2009b) Haar wavelet method for solving
Cahn-Allen equation. Appl Math Sci 3(51):2523-2533

Hariharan G, Kannan K (2010a) Haar wavelet method for solving
nonlinear parabolic equations. J Math Chem 48:1044-1061

Hariharan G, Kannan K (2010b) A comparative study of a Haar
wavelet method and a restrictive Taylor’s series method for
solving convection-diffusion equations. Int J] Comput Meth Eng
Sci Mech 11(4):173-184

Hariharan G, Rajaraman R (2013) A new coupled wavelet-based
method applied to the nonlinear reaction—diffusion equation
arising in mathematical chemistry. J Math Chem 51:2386-2400.
doi:10.1007/s10910-013-0217-9

Hariharan G, Kannan K, Sharma K (2009) Haar wavelet in estimating
the depth profile of soil temperature. Appl Math Comput 210:
119-225

Heydari MH, Hooshmandasl MR, Maalek Ghaini FM, Mohammadi F
(2012) Wavelet collocation method for solving multiorder
fractional differential equations. J Appl Math. doi:10.1155/
2012/542401

Jafari H, Soleymanivaraki M, Firoozjace MA (2011) Legendre
wavelets for solving fractional differential equations. J Appl
Math 7(4):65-70

Kheiri H, Alipour N, Dehghani R (2011) Homotopy analysis and
homotopy pad_e methods for the modified Burgers-Korteweg-de
Vries and the Newell-Whitehead equations. Math Sci 5(1):33-50

Khellat F, Yousefi SA (2006) The linear Legendre mother wavelets
operational matrix of integration and its application. J Franklin
Inst 343:181-190

Maleknejad K, Sohrabi S (2007) Numerical solution of Fredholm
integral equations of the first kind by using Legendre wavelets.
Appl Math Comput 186:836-843

Mohammadi F, Hosseini MM (2011) A new Legendre wavelet
operational matrix of derivative and its applications in solving
the singular ordinary differential equations. J Franklin Inst 348:
1787-1796

Nourazar SS, Soori M, Nazari-Golshan A (2011) On the exact
solution of Newell-Whitehead—Segel equation using the homot-
opy perturbation method. Aust J Basic Appl Sci 5(8):1400-1411

Parsian H (2005) Two dimension Legendre wavelets and operational
matrices of integration. Acta Math Acad Paedagog Nyhazi
21:101-106

Razzaghi M, Yousefi S (2000) The Legendre wavelets direct method
for variational problems. Math Comput Simulat 53:185-192

@ Springer


http://dx.doi.org/10.1007/s10910-012-0132-5
http://dx.doi.org/10.1007/s10910-012-0132-5
http://dx.doi.org/10.1007/s10910-013-0217-9
http://dx.doi.org/10.1155/2012/542401
http://dx.doi.org/10.1155/2012/542401

380 G. Hariharan: An Efficient Legendre Wavelet-Based Approximation Method

Razzaghi M, Yousefi S (2001) The Legendre wavelets operational Yang Y (2013) Solving a Nonlinear Multi-Order Fractional

matrix of integration. Int J Syst Sci 32:495-502 Differential Equation Using Legendre Pseudo-Spectral

Schneider G (1994) Validity and Limitation of the Newell-Whitehead Method. Applied Mathematics 4:113-118. doi:10.4236/am.
Equation. Universitat Hannover, Honover 2013.41020

Voigt A (2001) Asymptotic behavior of solutions to the Allen -Cahn Yin F, Song J, Lu F (2013) A coupled method of Laplace transform
equation in spherically symmetric domains. Caesar Preprints, and Legendre wavelets for nonlinear Klein-Gordon equations.
Bonn, pp 1-8 Math method Appl Sci. doi:10.1002/mma.2834

Yin F, Song J, Lu F, Leng H (2012) A coupled method of Laplace Yousefi SA (2006) Legendre wavelets method for solving differ-
transform and Legendre wavelets for Lane-Emden-type differ- ential equations of Lane-Emden type. App Math Comput 181:
ential equations. J Appl Math 2012. doi:10.1155/2012/163821 1417-1442

@ Springer


http://dx.doi.org/10.1155/2012/163821
http://dx.doi.org/10.4236/am.2013.41020
http://dx.doi.org/10.4236/am.2013.41020
http://dx.doi.org/10.1002/mma.2834

	An Efficient Legendre Wavelet-Based Approximation Method for a Few Newell--Whitehead and Allen--Cahn Equations
	Abstract
	Introduction
	Legendre Wavelets and Properties
	Wavelets
	Legendre Wavelets
	Block Pulse Functions (BPFs) (Yin et al. 2013)
	Approximating the Nonlinear Term (Yin et al. 2013)
	Function Approximation

	Method of Solution
	Solving the Cahn--Allen Equation by the LLWM
	Solving the Newell--Whitehead equation by the LLWM

	Convergence Analysis and Error Estimation (Yin et al. 2013)
	Error Estimation

	Illustrative Examples
	Conclusion
	Acknowledgments
	References


