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Abstract In this paper, a wavelet-based approximation

method is introduced for solving the Newell–Whitehead

(NW) and Allen–Cahn (AC) equations. To the best of our

knowledge, until now there is no rigorous Legendre

wavelets solution has been reported for the NW and AC

equations. The highest derivative in the differential equa-

tion is expanded into Legendre series, this approximation is

integrated while the boundary conditions are applied using

integration constants. With the help of Legendre wavelets

operational matrices, the aforesaid equations are converted

into an algebraic system. Block pulse functions are used to

investigate the Legendre wavelets coefficient vectors of

nonlinear terms. The convergence of the proposed methods

is proved. Finally, we have given some numerical exam-

ples to demonstrate the validity and applicability of the

method.

Keywords Newell–Whitehead equation � Allen–Cahn

equation � Operational matrices � Legendre wavelets �
Laplace transform method � Homotopy analysis method

Introduction

Wavelet analysis, as a relatively new and emerging area in

Applied Mathematical Research, has received considerable

attention in dealing with PDEs (Hariharan et al. 2009;

Hariharan and Kannan 2009a; Hariharan and Kannan

2010a; Hariharan and Kannan 2010b; Hariharan 2013;

Jafari et al. 2011; Yang 2013; Heydari et al. 2012; Yin

et al. 2012). In recent years, nonlinear reaction diffusion

equations (NLRDE) have been used as a basis for a wide

variety of models, for the special spread of gene in popu-

lation (Hariharan and Kannan 2009a) and for chemical

wave propagation (Babolian and Saeidian 2009).

Consider the general nonlinear parabolic equation is of

the form

Ut ¼ Uxx þ aU þ bUn ð1Þ

where a and b are real constants. For a = 1, b = -1 and

n = 3, Eq. (1) becomes Allen–Cahn (AC) equation. It

arises in many scientific applications such as mathematical

biology, quantum mechanics and plasma physics (Voigt

2001; Hariharan and Kannan 2009b). If for n = 3 and

b = -b, then Eq. (1) becomes the Newell–Whitehead

(NW) equation. This equation describes the dynamical

behavior near the bifurcation point for the Rayleigh–Be-

nard convection of binary fluid mixtures (Hariharan and

Kannan 2010a; Nourazar et al. 2011; Schneider 1994;

Babolian and Saeidian 2009; Kheiri et al. 2011; Ezzati and

Shakibi 2011; Hammouch and Mekkaoui 2013).

In recent years, wavelet transforms have found their way

into many different fields in science and engineering.

Moreover, wavelet transform methods establish a connec-

tion with fast numerical algorithms.

Wavelet theory possesses many useful properties, such

as Compact support, orthogonality, dyadic, orthonormality

and multi-resolution analysis (MRA). In recent years, the

AC equations play a significant role in fluid dynamics and

many scientific applications. Recently, many new approa-

ches to NLRDEs have been proposed, for example, the

Adomian decomposition method (Ezzati and Shakibi

2011), homotopy perturbation method (Nourazar et al.

2011), homotopy analysis method (Hariharan 2013; Kheiri
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et al. 2011). A more comprehensive list of references about

the NW and Allen–Cahn equation (ACE) and its applica-

tions in engineering can be found in (Hariharan and Kan-

nan 2009a; Hariharan and Kannan 2010a; Schneider 1994;

Voigt 2001; Kheiri et al. 2011; Hariharan and Kannan

2009b; Ezzati and Shakibi 2011). Recently, Hariharan and

Rajaraman (2013) established a new coupled wavelet-

based method applied to the NLRDE arising in mathe-

matical chemistry. Yin et al. (2013) introduced a wavelet

based hybrid method for solving Klein–Gordan equations.

In the numerical analysis, wavelet based methods and

hybrid methods become important tools because of the

properties of localization. In wavelet based methods, there

are two important ways of improving the approximation of

the solutions: increasing the order of the wavelet family

and the increasing the resolution level of the wavelet.

There is a growing interest in using various wavelets

(Razzaghi and Yousefi 2001; Parsian 2005; Razzaghi and

Yousefi 2000; Yousefi 2006; Mohammadi and Hosseini

2011; Maleknejad and Sohrabi 2007; Hariharan et al. 2009;

Hariharan and Kannan 2009a; Hariharan and Kannan

2010a; Hariharan and Kannan 2010b; Jafari et al. 2011;

Yang 2013; Heydari et al. 2012; Yin et al. 2012; Khellat

and Yousefi 2006) to study problems, of greater compu-

tational complexity. Among the wavelet transform families

the Haar and Legendre wavelets deserve much attention.

The basic idea of Legendre wavelet method is to convert

the PDEs to a system of algebraic equations by the oper-

ational matrices of integral or derivative (Hariharan et al.

2009; Hariharan and Kannan 2009a; Hariharan and Kannan

2010a; Hariharan and Kannan 2010b). The main goal is to

show how wavelets and MRA can be applied for improving

the method in terms of easy implementability and achiev-

ing the rapidity of its convergence. Razzaghi and Yousefi

(2001); Razzaghi and Yousefi 2000) introduced the

Legendre wavelet method for solving variational problems

and constrained optimal control problems. Hariharan et al.

(Hariharan et al. 2009; Hariharan and Kannan 2009a; Ha-

riharan and Kannan 2010a; Hariharan and Kannan 2010b)

had introduced the diffusion equation, convection–diffu-

sion equation, Reaction–diffusion equation, non linear

parabolic equations and Fisher’s equation by the Haar

wavelet method. Mohammadi and Hosseini (Mohammadi

and Hosseini 2011) had showed a new Legendre wavelet

operational matrix of derivative in solving singular ordin-

ary differential equations. Jafari et al. (2011) had solved the

fractional differential equations by the Lagendre wavelet

method. Parsian (2005) introduced two dimension Legen-

dre wavelets and operational matrices of integration. In

recent years, many analytical/approximation methods have

been proposed for solving the NW and AC equations.

In this work, we have applied a wavelet-based coupled

method (LLWM) which combines the Laplace transform

method and the Legendre wavelets method for the

numerical solutions of the NW and AC equations.

This paper is organized as follows: basic definitions of

wavelets, Legendre wavelets and their properties are

described in Legendre Wavelets and Properties Section.

Then, the method of solution of the NW and AC equations

by the LLWM is presented in Method of Solution Section.

In Convergence Analysis and Error Estimation Section, the

convergence analysis is described. In Illustrative Examples

Section, several numerical examples are presented to

demonstrate the effectiveness of the proposed method.

Concluding remarks are given in Conclusion Section.

Legendre Wavelets and Properties

Wavelets

Wavelets are the family of functions which are derived

from the family of scaling function f;j; k: k 2 Zg where:

;ðxÞ ¼
X

k
ak ;ð2x� kÞ ð2Þ

For the continuous wavelets, the following equation can

be represented:

Wa;bðxÞ ¼ jaj
�1
2 W

x� b

a

� �
a; b 2 R; a 6¼ 0: ð3Þ

where a and b are dilation and translation parameters,

respectively, such that WðxÞ is a single wavelet function.

The discrete values are put for a and b in the initial form

of the continuous wavelets, i.e.:

a ¼ a
�j
0 ; a0 [ 1; b0 [ 1; ð4Þ

b ¼ kb0a
�j
0 ; j; k 2 Z: ð5Þ

Then, a family of discrete wavelets can be constructed

as follows:

Wj; k ¼ ja0j
1
2Wð2 jx� kÞ; ð6Þ

So, Wj;kðxÞ constitutes an orthonormal basis in L2 (R),

where WðxÞ is a single function.

Legendre Wavelets

The Legendre wavelets are defined by
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WnmðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2

r
2

k
2Lmð2kt � n

_Þ;

0;

8
>><

>>:

for
n
_

� 1

2k
� t� n

_

þ 1

2k

otherwise

;

ð7Þ

where m = 0, 1, 2, …, M - 1, and n = 1, 2, …, 2 k - 1.

The coefficient
ffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2

q
is for orthonormality, then, the

wavelets Wk;mðxÞ form an orthonormal basis for L2[0, 1] []

In the above formulation of Legendre wavelets, the

Legendre polynomials are in the following way:

p0 ¼ 1;

p1 ¼ x;

pmþ1ðxÞ ¼
2mþ 1

mþ 1
x pmðxÞ �

m

mþ 1
pm�1ðxÞ: ð8Þ

and pmþ1ðxÞf g are the orthogonal functions of order m,

which is named the well-known shifted Legendre polyno-

mials on the interval [0, 1] Note that, in the general form of

Legendre wavelets, the dilation parameter is a = 2-k and

the translation parameter is b = n 2k.

Block Pulse Functions (BPFs) (Yin et al. 2013)

The block pulse functions form a complete set of orthog-

onal functions which defined on the interval [0, b] by

biðtÞ ¼ 1;
i� 1

m
b� t\

i

m
b

0 elsewhere

(
ð9Þ

for i = 1, 2, …, m. It is also known that for any absolutely

integrable function f(t) on [0, b] can be expanded in block

pulse functions:

f ðtÞ ffi nTBmðtÞ ð10Þ

nT ¼ f1; f2. . .; fm½ �;BmðtÞ ¼ b1ðtÞ; b2ðtÞ; . . .bmðtÞ½ � ð11Þ

where fi are the coefficients of the block-pulse function,

given by

fi ¼
m

b

Zb

0

f ðtÞbiðtÞdt ð12Þ

Remark 1: Let A and B are two matrices of m 9 m, then

A� B ¼ ðaij � bijÞmm
.

Lemma 1: Assuming f(t) and g(t) are two absolutely

integrable functions, which can be expanded in block pulse

function as f(t) = FB(t) and g(t) = GB(t) respectively, then

we have

f ðtÞgðtÞ � FBðtÞBTðtÞGT ¼ HBðtÞ ð13Þ

where H ¼ F � G.

Approximating the Nonlinear Term (Yin et al. 2013)

The Legendre wavelets can be expanded into m-set of

block-pulse functions as

WðtÞ ¼ ;m �mBmðtÞ ð14Þ

Taking the collocation points as following

ti ¼
i� 1=2

2k�1M
; i ¼ 1; 2; . . .; 2K�1M ð15Þ

The m-square Legendre matrix ;m � m is defined as

;m � m ffi Wðt1ÞWðt2Þ. . .Wðt2k � 1MÞ½ � ð16Þ

The operational matrix of product of Legendre wavelets

can be obtained by using the properties of BPFs, let

f x; tð Þ and gðx; tÞ are two absolutely integrable functions,

which can be expanded by Legendre wavelets as f x; tð Þ ¼
WT xð ÞFW tð Þ and g x; tð Þ ¼ WT xð ÞGW tð Þ respectively.

Then

f x; tð Þ ¼ WT xð ÞFW tð Þ ¼ BT xð Þ;T
mmF;mmB tð Þ; ð17Þ

g x; tð Þ ¼ WT xð ÞGW tð Þ ¼ BT xð Þ;T
mmG;mmB tð Þ; ð18Þ

and

Fb ¼ ;T
mmF;mm;Gb ¼ ;T

mmG;mm;Hb ¼ Fb � Gb:

f x; tð Þg x; tð Þ ¼ BT HbB tð Þ;

¼ BT xð Þ;T
mminv ;T

mm

� �
Hbinv inv ;T

mm

� �
Hbinv ;mmð Þ

� �
;mmB tð Þ

¼ WT xð ÞHW tð Þ ð19Þ
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where H ¼ invð;T
mmÞHbinvðð;mmÞÞ

Function Approximation

A given function f(x) with the domain [0, 1] can be

approximated by:

f ðxÞ ¼
X1

k¼1

X1
m¼0

ck;mWk;mðxÞ ¼ CT :WðxÞ: ð20Þ

Here C and W are the matrices of size 2j�1M � 1
� �

.

C ¼ c1;0; c1;1; . . .c1;M�1; c2;0; c2;1; . . .c2;M�1; . . .
�

c2j�1;1; . . .c2j�1;M�1

�T ð21Þ

WðxÞ ¼ ½W1;0;W1;1;W2;0;W2;1; . . .Wð2;M�1Þ; . . .Wð2ðj�1Þ;M�1Þ�T:
ð22Þ

Method of Solution

Solving the Cahn–Allen Equation by the LLWM

We consider the AC equation

Ut ¼ eUxx þ U � U3 ð23Þ

Taking Laplace transform on both sides of Eq. (23), we

get

sLðUÞ � Uðx; 0Þ ¼ L½eUxx þ U � U3� ð24Þ

sLðUÞ ¼ Uðx; 0Þ þ L½eUxx þ U � U3� ð25Þ

LðUÞ ¼ Uðx; 0Þ
s
þ 1

s
L½eUxx þ U � U3� ð26Þ

Taking inverse Laplace transform to Eq. (26) we get

Uðx; tÞ ¼ Uðx; 0Þ þ L�1 1

s
L½eUxx þ U � U3�

� �
ð27Þ

Because

L�1 1

s
LðtnÞ

	 

¼ L�1 n!

snþ2

� �

¼ 1

nþ 1
tnþ1; ðn ¼ 0; 1; 2; . . .Þ

ð28Þ

We have

L�1½s�1LðÞ� ¼
Z t

0

ð:Þdt ð29Þ

From Eq. (29), we obtain

Uðx; tÞ ¼ Uðx; 0Þ þ L�1 1

s
L eUxx þ g Uð ÞÞð Þ

� �
ð30Þ

Where g Uð Þ ¼ U � U3

Uðx; tÞ ¼ Uðx; 0Þ þ L�1 1

s
L eUxx þ g Uð ÞÞð Þ

� �
ð31Þ

By using the Legendre wavelets method,

Uðx; tÞ ¼ CTwðx; tÞ
Uðx; 0Þ ¼ STwðx; tÞ

gðUÞ ¼ GTwðx; tÞ

9
>=

>;
ð32Þ

Substituting Eq. (32) in Eq. (27), we obtain

CT ¼ ST þ ðeCT Dx2 � GTÞP2
t ð33Þ

Here GT has a nonlinear relation with C. When we solve

a nonlinear algebraic system, we get the solution is more

complex and large computation time. In order to overcome

the above drawbacks, we introduce an approximation for-

mula as follows:

Unþ1 ¼ Uðx; 0Þ þP
o2Un

ox2
þ gðUnÞ

	 

ð34Þ

where g Uð Þ ¼ aU � aU2

Expanding u(x, t) by Legendre wavelets using the fol-

lowing relation

Cnþ1
T ¼ C0

T þ ½Cn
T Dx

2 � Gn
T �Pt

2 ð35Þ

Solving the Newell–Whitehead equation by the LLWM

We consider the Nowell–Whitehead equation

Ut ¼ Uxx þ aU � bU3 ð36Þ

Taking Laplace transform on both sides of Eq. (36), we

get

sLðUÞ � Uðx; 0Þ ¼ L½Uxx þ aU � bU3� ð37Þ

sLðUÞ ¼ Uðx; 0Þ þ L½Uxx þ aU � bU3� ð38Þ

LðUÞ ¼ Uðx; 0Þ
s
þ 1

s
L½Uxx þ aU � bU3� ð39Þ

Taking inverse Laplace transform to Eq. (39) we get
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Uðx; tÞ ¼ Uðx; 0Þ þ L�1 1

s
L½Uxx þ aU � bU3�

� �
ð40Þ

Because

L�1 1

s
LðtnÞ

	 

¼ L�1 n!

snþ2

� �
¼ 1

nþ 1
tnþ1; ðn ¼ 0; 1; 2; . . .Þ

ð41Þ

We have

L�1½s�1LðÞ� ¼
Z t

0

ð:Þdt ð42Þ

From Eq. (42), we obtain

Uðx; tÞ ¼ Uðx; 0Þ þ L�1 1

s
L Uxx þ g Uð ÞÞð Þ

� �
ð43Þ

Where g Uð Þ ¼ aU � bU3

Uðx; tÞ ¼ Uðx; 0Þ þ L�1 1

s
L Uxx þ g Uð ÞÞð Þ

� �
ð44Þ

By using the Legendre wavelets method,

Uðx; tÞ ¼ CTwðx; tÞ
Uðx; 0Þ ¼ STwðx; tÞ

gðUÞ ¼ GTwðx; tÞ

9
>=

>;
ð45Þ

Substituting Eq. (45) in Eq. (43), we obtain

CT ¼ ST þ ðCT Dx2 � GTÞP2
t ð46Þ

Here GT has a nonlinear relation with C. When we solve

a nonlinear algebraic system, we get the solution is more

complex and large computation time. In order to overcome

the above drawbacks, we introduce an approximation for-

mula as follows:

Unþ1 ¼ Uðx; 0Þ þP
o2Un

ox2
þ gðUnÞ

	 

ð47Þ

where g Uð Þ ¼ aU � bU3

Expanding u(x, t) by Legendre wavelets using the fol-

lowing relation

Cnþ1
T ¼ C0

T þ ½Cn
T Dx

2 � Gn
T �Pt

2

Convergence Analysis and Error Estimation

(Yin et al. 2013)

U	 ¼ U0 þP U	xx þ gðU	Þ
� �

ð48Þ

Unþ1 ¼ U0 þP ðUnÞxx þ gðUnÞ
� �

ð49Þ

Subtracting Eq. (48) from Eq. (49), we obtain

Unþ1 � U	 ¼ P ðUn � U	Þxx þ gðUnÞ � gðU	Þ
� �

ð50Þ

Using Lipschitz condition, gðUnÞ � gðU	Þk k� c
Un � U	k k, we have

Unþ1 � U	k k� PðUn � U	Þxx

�� ��þ PðgðUnÞ � gðU	ÞÞk k
ð51Þ

� P Un � U	ð Þxx

�� ��þ c P Un � U	ð Þk k ð52Þ

Let Unþ1 ¼ CT
nþ1wðx; tÞ

U	 ¼ CTwðx; tÞ

2T
nþ1¼ CT

nþ! � CT

Eq. (52) gives

2T
nþ1 � 2T

n D2
xP2

t þ cP2
t

�� �� ð53Þ

The following formula Eq. (54) can be obtained by

using recursive relation.

2nþ1
T � 2n

T Dx
2Pt

2 þ cPt
2

�� ��n20 ð54Þ

When Lim
n!1

Dx
2Pt

2 þ cPt
2

�� ��n
= 0, the series solution

of Eq. (23) using the LLWM converges to u	 xð Þ: By

using the definitions of Dx and Pt, we can get the value of

c. Suppose k ¼ k0 ¼ 1 and M ¼ M0, the maximum ele-

ment of Dx and Pt is 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M � 1ð Þ 2M � 3ð Þ

p
and 0.5

respectively.

Error Estimation

The accuracy of the proposed method LLWM is estimated

by the following error function

EJ ¼ Uexact � Uapprox

�� ��
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Illustrative Examples

Example 5.1 We consider the AC equation of the form

(Hariharan and Kannan 2010a; Voigt 2001; Hariharan and

Kannan 2009b)

ou

ot
¼ o2u

ox2
þ uð1� u2Þ ð55Þ

The exact solution in a closed form is given by

u x; tð Þ ¼ 1

1þ e�
ffiffi
2
p

2

� �
xþ 3

ffiffi
2
p

2

� �
t

� �
þ c0

; ð56Þ

where c0 is integration constant.

The approximation formula for Eq. (55) as follows

Unþ1 ¼ Uðx; 0Þ þP
o2Un

ox2
þ gðUnÞ

	 

ð57Þ

where g Uð Þ ¼ aU � bU3

Expanding u(x, t) by Legendre wavelets using the fol-

lowing relation

Cnþ1
T ¼ C0

T þ ½Cn
T Dx

2 � Gn
T �Pt

2 ð58Þ

Example 5.2 Consider the initial value problem (Ezzati

and Shakibi 2011)

ou

ot
¼ o2u

ox2
þ uð1� u2Þ ð59Þ

with an initial condition of

u x; 0ð Þ ¼ �0:5þ 0:5 tanh 0:3536xð Þ ð60Þ

The exact solution is given by

u x; tð Þ ¼ �0:5þ 0:5 tanh 0:3536x� 0:75tð Þ ð61Þ

Example 5.3 We consider the Newell–Whitehead–Segel

equation (Nourazar et al. 2011)

ou

ot
¼ o2u

ox2
þ 2u� 3u2 ð62Þ

Subject to the initial condition

u x; 0ð Þ ¼ k ð63Þ

The exact solution in a closed form is given by

u x; tð Þ ¼
� 2

3
ke2t

� 2
3
þ k� ke2t

ð64Þ

The Newell–Whitehead–Segel equations have wide

applicability in mechanical and chemical engineering,

ecology, biology and bio-engineering.

Example 5.4 Consider the initial value problem

(Hariharan and Kannan 2009a)

ut ¼ uxx þ u� u2 ð65Þ

Subject to the initial condition

u x; 0ð Þ ¼ 1

1þ e
xffiffi
6
p


 �2
ð66Þ

The exact solution in a closed form is given by

u x; tð Þ ¼ 1

1þ e
xffiffi
6
p �5

6
t


 �2
ð67Þ

Example 5.5 Consider the Newell–Whitehead–Segel

equation (Nourazar et al. 2011)

ut ¼ uxx þ u� u4 ð68Þ

Subject to the initial condition

u x; 0ð Þ ¼ 1

1þ e
3xffiffiffi
10
p


 �2
3

ð69Þ

The exact solution in a closed form is given by

u x; tð Þ ¼ 1

2
tanh � 3

2
ffiffiffiffiffi
10
p x� 7ffiffiffiffiffi

10
p t

� �� �
þ 1

2

� �2
3

ð70Þ

Our results can be compared with Nourazar et al. (2011)

results.

Example 5.6 Consider the Newell–Whitehead–Segel

equation (Nourazar et al. 2011)

ut ¼ uxx þ 3u� 4u3 ð71Þ

Subject to the initial condition

u x; 0ð Þ ¼
ffiffiffi
3

4

r
e
ffiffi
6
p

x

e
ffiffi
6
p

x þ e
ffiffi
6
p

2
x

ð72Þ
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The exact solution in a closed form is given by

u x; tð Þ ¼
ffiffiffi
3
p

4

e
ffiffi
6
p

x

e
ffiffi
6
p

x þ e
ffiffi
6
p

2
x�9

2
t

� �
 !

ð73Þ

Example 5.7: Consider the NW equation (Hammouch

and Mekkaoui 2013)

ut ¼ uxx þ u� u3 ð74Þ

Subject to the initial condition

u x; 0ð Þ ¼
sinh xffiffi

2
p

 �

1þ cosh xffiffi
2
p

 � ð75Þ

The exact solution in a closed form is given by

u x; tð Þ ¼ e
xffiffi
2
p � e

� xffiffi
2
p

e
xffiffi
2
p þ e

� xffiffi
2
p þ 2e�

3
2
t

ð76Þ

Example 5.8 Consider the NW equation (Kheiri et al.

2011)

ut ¼ uxx þ 4uþ 4u3 ð77Þ

Subject to the initial condition

u x; 0ð Þ ¼
cosh 1

2

ffiffiffi
2
p

x
� �

þ sinh 1
2

ffiffiffi
2
p

x
� �� �2

4 cosh2 1
2

ffiffiffi
2
p

x
� � ð78Þ

The exact solution in a closed form is given by

u x; tð Þ ¼
cosh 1ffiffi

2
p x� 3

ffiffiffi
2
p

t
� �
 �

þ sinh 1ffiffi
2
p x� 3

ffiffiffi
2
p

t
� �
 �
 �2

4 cosh2 1ffiffi
2
p x� 3

ffiffiffi
2
p

t
� �
 �

ð79Þ

Tables (1, 2, 3, 4, 5) show the numerical solutions of

the AC and NW type equations for various values

(x, t). Our LLWM results are in excellent agreement

Table 1 Absolute error of LLWM (Example 5.2)

x t = 0.1 t = 0.3 t = 0.5

-25 1.18943E-11 7.27843E-12 6.4747E-12

-15 2.36636E-9 9.36464E-10 1.35653E-10

25 9.84744E-10 8.46464E-9 7.49924E-10

30 3.57575E-11 7.484843E-10 2.44443E-10

Table 2 Comparison between

the exact and LLWM for

Example 5.4

x t Uexact ULLWM

0.25 0.5 0.81839 0.81855

1.0 0.98292 0.98305

2.0 0.99988 0.99999

5.0 1.00000 1.00000

0.50 0.5 0.77590 0.77602

1.0 0.97815 0.97824

2.0 0.99985 0.99996

5.0 1.00000 1.0000

0.75 0.5 0.72582 0.72595

1.0 0.92207 0.92221

2.0 0.99981 0.99993

5.0 1.00000 1.00000

Table 3 Comparison between

the exact and LLWM for

Example 5.6

x t Exact LLWM

0.1 0.2 0.5054 0.5062

0.2 0.4 0.7364 0.7371

0.3 0.6 0.8780 0.8786

0.4 0.8 0.9475 0.9480

0.5 1.0 0.9781 0.9784

Table 4 Numerical values of Example 5.7 (k = 1 and M = 3)

x t Exact solution

uHAM

Numerical

uLLWM

0.001 0.001 0.49983572 0.49983571

0.002 0.002 0.49967144 0.49967145

0.003 0.003 0.49950716 0.49950715

0.004 0.004 0.49934288 0.49934288

0.005 0.005 0.49917859 0.49917858

0.006 0.006 0.49901431 0.49901430

0.007 0.007 0.49988501 0.49988502

0.008 0.008 0.49868574 0.49868571

0.009 0.009 0.49852145 0.49852146

0.01 0.01 0.49835716 0.49835712

Table 5 Numerical values of

Example 5.8 (k = 1 and M = 3)
x t = 5

-30 9.8577 9 10-31

-25 1.3786 9 10-24

-20 1.9110 9 10-18

-15 2.6451 9 10-11

-10 4.4842 9 10-10
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with the exact solution and those obtained by the

Adomian decomposition method (ADM), Homotopy

perturbation method (HPM), Homotopy analysis method

(HAM) and the differential transform method (DTM).

Figs. (1, 2, 3) show the numerical solutions of the AC

and NW type equations for various values of (x, t).
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Fig. 1 The surface area shows

that u(x, t) using LLWM for

Example 5.1 at x = 0.75, k = 3

and M ¼ 2
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Fig. 2 The surface area shows

that u(x, t) using LLWM for

Example 5.4 at x = 0.75, k = 2

and M ¼ 2
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Good agreement with the exact solution is achieved. For

larger values of

All the numerical experiments presented in this section

were computed in double precision with some MATLAB

codes on a personal computer System Vostro 1400 Pro-

cessor 9 86 Family 6 Model 15 Stepping 13 Genuine

Intel *596 MHz.

Conclusion

In this work, a new Legendre wavelet-based approximation

method has been successfully employed to obtain the

numerical solutions of NW and AC equations arising in

various fields. The proposed scheme is the capability to

overcome the difficulty arising in calculating the integral

values while dealing with nonlinear problems. This method

shows higher efficiency than the traditional Legendre

wavelet method for solving nonlinear PDEs. Numerical

example illustrates the powerful of the proposed scheme

LLWM. Also this paper illustrates the validity and excel-

lent potential of the LLWM for nonlinear and fractional

PDEs. The numerical solutions obtained using the pro-

posed method show that the solutions are in very good

coincidence with the exact solution. In addition the cal-

culations involved in LLWM are simple, straight forward

and small computation cost. In ‘‘Convergence Analysis and

Error Estimation’’ section, we have developed the con-

vergence of the proposed algorithm.
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